SAR IMAGING PROCESSING

♦ High Resolution SAR Imaging Processing & Control Unit

♦ SAR Interferometric Radar Altimeter Processing Unit
Applications

- High Resolution Synthetic Aperture Radar imaging instrument for observation satellites.

Main features

- Digital Chirp Generator, with programmable waveforms and pulse repetition frequency
- Radio Frequency Unit and High Power Amplifier control
- Emission and reception channel sequencing with a high timing accuracy
- RF reception channel
- High input bandwidth
- Amplitude Phase Demodulation, and high bandwidth Analogue to Digital Conversion
- Possibility of decreasing the resolution to increase the number of images to store
- Large capacity Solid State Recorder with high acquisition data rate and output source formatting
- Auxiliary data acquisition and storage
- Attractive Mass and Power budget

Background

Key RADAR programs:
- JASON1 and 2
- CRYOSAT
- OSIRIS
- METOP
- SAR-Lupe

Key programs with Solid State Recorder:
- SPOT5 & HELIOS2
- IRS-P5
- KOMPSAT2

Key Benefits

- Compatible with most of the LEO platforms (MIL 1553 Bus command control, primary bus, …)
- Low budgets & High Throughput
- Flexibility with regards to mission parameters (RADAR sequences and waveforms, file management, …)

Technical description

- Highly integrated design with radar and mass memory functions in the same box
- Reception channel, including high performance analogue amplitude phase demodulator, analogue to digital conversion and very high data rate acquisition implemented in ASIC
- Programmable number of bits of the Analogue to Digital Conversion
- Programmable emission and reception sequencer enabling to perform different types of mission and control different type of RF unit
- Digital chirp generation with the possibility of uploading new waveforms
- MCM 3D technology used for the mass memory to enhance mass and volume budgets
- Internal redundancy for the mass memory
- Serial image telemetry interface (Hotlink), source formatting implemented in FPGA
- MIL 1553 interface
- LVDS interface for the other platform signals (reset, 1Hz reference, …)
- LVDS interface for the RF unit and HPA command-control
- Centralised DCDC converter with distributed power regulation, and distribution of the bus to the Radio Frequency Unit
- Radiation hardened processor & ASICs
For further information, please contact
Thales Alenia Space France
Equipment Sales Department
26 avenue J.F. Champollion
B.P. 33787
31037 Toulouse Cedex 1
France
Tél.: +33(0)5 34 35 36 37
Fax: +33(0)5 61 44 49 90
Website : www.thalesaleniaspace.com

This datasheet is not contractual and can be changed without any notice

Updated : September 2012
Applications

- High Resolution spaceborne Radar applications for earth observation and exploration

Main features

- In-flight Software uploading capability
- 3 main measurement modes assigned to 3 measurement areas:
 - LRM mode (Low Resolution mode) with a data rate of 60 Kbits/s for oceanographic parameters or ice sheet interiors measurement
 - SAR mode (High Resolution Synthetic Aperture Radar mode) with a data rate of 12 Mbits/s for sea ice measurement
 - SAR Interferometric (Dual Channel High Resolution SAR mode) with a data rate of 24 Mbit/s for ice sheet margins and mountains glaciers measurement

Interfaces

- Telemetry payload
- Bus power and data handling
- RF subsystem (Tx and Rx path)

Production

- Typical delivery schedule: To + 16 months

Key Benefits

- Compatible with most of the LEO platforms (MIL 1553 Bus command control, primary bus, telemetry interface, ...)
- Flexibility with regards to mission parameters (RADAR sequences and waveforms, file management, ...)
- High software processing capability thanks to an internal digital signal processor.

Technical description

Digital part of the instrument:

- Board rack structure
- Integrated design (use of ASICs and FPGAs technologies)
- Radiation hardened
- Latch-up free
- Flight proven design
- Various functions:
 - Digital Chirp generator
 - Radar timing unit and sequencer
 - Two channels Digital Amplitude Phase demodulation
 - Two Channels IEEE 1355 formatting high data rate
 - MIL STB 1553B Platform interface
 - Instrument Control and Processing Unit (DSP21020)
 - DC/DC power distribution

Background

- 2 processing units currently in orbit for TOPEX POSEIDON
- 2 processing units currently in orbit for JASON/POSEIDON2
- 1 flight model for CRYOSAT mission
- 1 flight model for POSEIDON3 mission,
- Current study on a Ka band altimeter
- ASCAT digital + RF unit for scatterometer
- Variety of SAR applications (high bandwidth acquisition)
Digital Unit in its environment: Instrument typical block diagram

Digital Unit typical performance

Chirp generator performance
Duration, bandwidth and PRI programmable
Capability for in-flight reprogramming
Bandwidth: 5 MHz to 500 MHz
Chirp duration: 5 s to 100 s
Phase stability from pulse to pulse
Amplitude ripple < 0.1 dB pp
Phase ripple < 1° pp
Signal to noise ratio > 50 dB

Receiver chains performance
Digital I&Q demodulator: 2 filtering options depending on the chirp bandwidth
Sampling frequency: 90 MHz
Fast Fourier transform: 128 points spectrum

Sequencer performance
Generation of programmable synchronization signals and clocks for RX and TX Chains
Pulse Repetition Frequency: 1 KHz to 20 KHz
Jitter < 50 ps

Formatter performance
• Generation of high data rate scientific TM packets
• IEEE 1355 protocol management

Control Unit functionalities
Communication (TC/TM) with the platform through a MIL STD 1553 data bus
Configuration/control of internal functions and of the instrument (Digital and RF Unit)
Echo processing for tracking purpose
Low data rate scientific TM generation

This datasheet is not contractual and can be changed without any notice

Updated: September 2012

For further information, please contact
Thales Alenia Space France
Equipment Sales Department
26 avenue J.F. Champollion
B.P. 33787
31037 Toulouse Cedex 1
France
Tél.: +33(0)5 34 35 36 37
Fax: +33(0)5 61 44 49 90
Website: www.thalesaleniaspace.com